Preview

Bromination of trans-cinnamic acid

Good Essays
Open Document
Open Document
688 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Bromination of trans-cinnamic acid
Abstract The bromination of trans-cinnamic acid was completed to determine dibromide’s stereochemical structure and its mechanism. After the addition of bromine to trans-cinnamic acid, the product was identified by its melting point and infrared spectrum resulting in erythro-2,3-Dibromo-3-phenylpropanoic acid after comparing similar properties.
Introduction
In this lab, the bromination of trans-cinnamic acid was completed to determine dibromide’s stereochemical structure, and from there determine whether the reaction is carried out by the usual bromonium ion mechanism or a different mechanism. This is important in the determination of dibromide’s stereochemical structure, as a mechanism can be affected by changing a reactant’s structure. Cinnamic acid was used in this lab because as a naturally occurring compound, it has many different uses. It is used as a flavoring, in perfumes, and is a source to a large number of other natural substances. Cinnamic acid is helpful in providing flowers with their bright colors, butterflies with their colorful wings, and gives fall leaves their distinguishable color. These examples reveal the day-to-day uses of cinnamic acid, and shows that the addition of bromide to this particular acid is nothing extremely complex or an uncommon chemical compound, it is easily obtainable. After the addition of bromine to trans-cinnamic acid, the product is identified by its melting point and infrared spectrum. The product could be erythro-dibromo, threo-dibromo, or a combination of both. Although obtaining a product consisting of both erythro and threo is possible, it results in an impure substance with a broad melting point range that contrasts pure dibromide. These particular compounds of erythro and threo are named as such to distinguish their two chiral centers, but no plane of symmetry. Both of these compounds are derived from simple sugars, erythrose and threose (Figure 1).



References: 1 Experiment is a modified version of an experiment found in: Lehman, J.W. Operational Organic Chemistry: a problem-solving approach to the laboratory course, 3rd ed., Prentice-Hall, Upper Saddle River, New Jersey, 1999. 2 www.sigmaaldrich.com 3. www.chemicalbook.com

You May Also Find These Documents Helpful

  • Good Essays

    Hydrocinnamic acid underwent bromination using N-bromosuccinimide and AIBN. As one lab partner set up the reflux apparatus, the other measured the chemicals used in the lab experiment. 2.10 g of hydrocinnamic acid was used. It was observed as white and had a slight cinnamon smell. The amount of NBS was 2.49g and was measured in the fume hood. AIBN was measured at .030 g. 10 mL of acetic acid was also obtained. The reflux apparatus consisted of a 25 mL flask with a stir bar in a water bath. The chemicals were added in the following order: hydrocinnamic acid, NBS, AIBN, and acetic acid. After they were added, the temperature was turned up to come to a constant temperature around 80 C. A condenser was placed on top of the flask so if any evaporated…

    • 449 Words
    • 2 Pages
    Good Essays
  • Good Essays

    The purpose of the bromination of arenes was to determine the different reactivities of different hydrocarbons with different hydrogen atoms when reacted with bromine under free-radical substitution. The time it took for the bromine color to disappear was used to determine the order of reactivity of the different hydrocarbons.…

    • 869 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    Mechanism 4 shows the debromination of 2α-bromocholestan-3-one to give 4. This mechanism which is similar to a Favoskii rearrangement, is likely to go via this path as other research has shown that there is often a by-product with this reaction. The by-product is cholest-4-en-3-one which requires the intermediate seen in the third molecule in the above mechanism. The intermediate is highly strained and with the presence of base a proton will be extracted which aids the collapse of the three membered ring. To gain the major product, 4, the H1 proton is removed, however it is very possible that the H4 proton is removed instead which would leave the minor product of cholest-4-en-3-one. Both products result in conjugation which will stabilise the molecule. The mechanism for this step is unlikely to go via a simple elimination as for an elimination the eliminated products must be trans to each other for facile leaving. As the bromine is equatorial in both the chair and the boat conformation the bromine is trans with neither of the hydrogens which shows this type of elimination is unlikely to occur. The other possibility is that the acidic hydrogen that is removed in the first step is not H4, but H2. This…

    • 372 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    (a)If the cinnamic acid were a mix of cis and trans than we would have gotten a mixture of erythro and threo product in the end. (b) If only 5mL of the bromine solution is added then the reaction would not be able to run to completion and bromine would be the limiting reagent causing less final product. (c) If cyclohexane was used then it would not react with the bromide nearly as much as the cyclohexene and there would be a larger amount of bromide in the final…

    • 751 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Alkene Addition Report

    • 804 Words
    • 4 Pages

    2. This is the mechanism for the bromination of (E)-stilbene. However, this is the mechanism for Br2 and in class we us Pyridinium Tribromide instead due to the difficulties associated with the handling of such a volatile chemical. The mechanisms are very similar though as both reactions prefer to form a three-membered ring intermediate.…

    • 804 Words
    • 4 Pages
    Good Essays
  • Good Essays

    In this experiment, 1,2-dibromo-1,2-diphenylethane is synthesized from the bromination of trans-stilbene through the addition of hydrobromic acid (HBr) and hydrogen peroxide (H2O2). This is a green reaction because bromine is generated in situ from the reaction of hydrobromic acid and hydrogen peroxide as shown in Figure 2.…

    • 1080 Words
    • 5 Pages
    Good Essays
  • Powerful Essays

    The objective of this experiment is to successfully perform a dehydration of 1-butanol and 2-butanol, also dehydrobromination of 1-bromobutane and 2-bromobutane to form the alkene products 1-butene, trans-2-butene, and cis-2-butene. The dehydration reactions react under and acid-catalysis which follows an E1 mechanism. It was found that dehydration of 1-butanol yielded 3.84% cis-2-butene, 81.83% trans-2-butene, and 14.33% 1-butene, while 2-butanol is unknown due to mechanical issues with the GC machine. For the dehydrobromination, with the addition of a strong base that can abstract a proton, which then pushes off the leaving group and a new sigma bond makes a new π-bond all at one time, this is follows E2 mechanism. It was found that the dehydrobromination of 1-bromobutane yielded 100% 1-butene, while 2-bromobutane yielded 13.09% cis-2-butene, 49.95% trans-2-butene, and 36.97% 1-butene.…

    • 1583 Words
    • 7 Pages
    Powerful Essays
  • Powerful Essays

    When an electrophile, such as bromine, adds to an alkene, the addition can be done in a syn fashion, in which the two groups add to the same side of the molecule, or in an anti fashion, in which the groups add to opposite sides of the molecule. Depending on the mode of addition, syn or anti, and the stereochemistry of the starting alkene, various stereoisomers will result. In some cases, a racemic mixture of products is formed, other times a meso compound is produced.…

    • 1157 Words
    • 5 Pages
    Powerful Essays
  • Satisfactory Essays

    Radical Bromination demonstrates the process of halogenation – where a halogen replaces a hydrogen in a molecule. Mechanism starts by breaking the bromine bonds by heat/light, forming radical halogen (initiation). The bromine radical then breaks a C-H bond on the molecule, forming a benzylic radical, and that same radical then attacks Br2 to regenerate bromine radical. Termination will then occur when the concentration of Bromine runs low. NBS is also used in this experiment to keep the bromine concentration low.…

    • 106 Words
    • 1 Page
    Satisfactory Essays
  • Satisfactory Essays

    This experiment involved the addition of trans-cinnamic acid to bromine for the production of 2,3-dibromo-3-phenylpropanoic acid. This process depicted an electrophilic addition of a halogen to an asymmetrically substituted alkene. A result of this process was the presence of a stereospecific bromonium ion formed by the mechanism of the reaction.…

    • 428 Words
    • 2 Pages
    Satisfactory Essays
  • Powerful Essays

    Abstract A technique for the Diels-Alder synthesis of endo-norbornene-cis-5,6dicarboxylic anhydride and its stereoisomer, exo-norbornene-cis-5,6-dicarboxylic anhydride, is explained. To prove that each stereoisomer was made in the experiment and to distinguish between the two molecules, the characteristic long range coupling affects seen in the H1-NMR spectra of bridged six member ring molecules are used. A method for the separation of the two molecules is also explained. This technique can be used as a tool to instruct organic chemistry students in the Diels-Alder reaction and how to use NMR techniques to prove the stereochemistry of the products involved in such reactions. Introduction The Diels-Alder reaction has long been an important tool for the organic chemist in that it not only creates new carbon-carbon bonds, but it also creates six-membered rings1. This attribute of the Diels-Alder reaction is especially valuable, because there are few synthetic methods of creating six-membered ring structures. The process of a DielsAlder reaction involves a substituted alkene reacting with a conjugated diene in the cis conformation to create two new carbon-carbon σ bonds which results in the formation of a six-membered ring, as shown below: Figure 1: Example Diels-Alder reaction…

    • 2591 Words
    • 11 Pages
    Powerful Essays
  • Good Essays

    The overall goal of this experiment is to understand and be familiar of SN1 reactivity. We also learned how to prepare 2-Bromobutane by learning how to distill and extract this product from its organic layer. Finally, another goal was to specifically understand the relative reactivity of alkyl halides under SN1 conditions by reacting the alkyl halide and silver nitrate in ethanol.…

    • 762 Words
    • 4 Pages
    Good Essays
  • Good Essays

    Cinnamic acid (3-phenylprop-2-enoic acid) is an unsaturated carboxylic acid. The electron rich π cloud (see Figure 1) in the double bond of this structure is nucleophilic and can be considered a Lewis base. It can therefore be saturated by the addition of a halogen to the double bond. Both of the reactants are non-polar but there is an induced polarity during the reaction due to the electron-rich site at the double bond, which results in bromine acting as an electrophile. In this reaction, the cinnamic acid reacts as an alkene.…

    • 532 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    BroIn this experiment of the relative rates of free-radical chain bromination, we were expected to be able to determine the relative reactivates of the many types of hydrogen atoms involved toward bromine atoms. Bromination is defined to be a regioselective reaction meaning bromine has preference of making or breaking a bond over all other directions that it may have had available. In this case, Markovnikov’s rule is revealed to be the case in this situation that states that adding a protic acid represented as HX to an alkene (sp2 hybridized), the hydrogen from that HX would be attracted to a carbon with the least alkyl groups and the halide (X) would become more attracted and will attach to the carbon containing more alkyl groups. Within the intermediate stage of the bromination reaction, the bromine radical will have already formed and the…

    • 576 Words
    • 3 Pages
    Satisfactory Essays
  • Good Essays

    The purpose of this experiment was to carry out the bromination of trans-cinnamic acid, to determine the stereochemistry of the dibromide product of 2,3-dibromo-3-phenylpropanoic acid, and find out whether the reaction proceeds by the usual bromonium ion mechanism or some other mechanism. In this experiment trans-cinnamic acid was mixed with glacial acetic acid and stirred in which then bromine/acetic acid solution was added to the mixture little by little. The dibromide becomes the precipitate of this solution during the reaction. Once this precipitate is separated by vacuum filtration the melting point helps identify the product.…

    • 721 Words
    • 3 Pages
    Good Essays